レイ・フロンティア株式会社のデータアナリストの齋藤です.
前回の続きを書いていきます.
層(続)
補題4より,\(\mathrm{supp} s \)は\(W\)の閉集合です.いま,\(S\)を\(W\)の閉部分集合とします.このとき,$$\Gamma_s(W;\mathscr{F}) = \{s \in \Gamma(W;\mathscr{F}) ; \mathrm{supp} s \subset S\}$$とおきます.自然な写像のなす列と,$$0 \rightarrow \Gamma_s(W;\mathscr{F}) \rightarrow \Gamma(W; \mathscr{F}) \rightarrow \Gamma(W \setminus S ; \mathscr{F})$$は完全列です.\(W\)と\(W^\prime\)をともに\(S\)の開近傍としたとき,\(\Gamma_S(W;\mathscr{F})\)と\(\Gamma_S(W^\prime ; \mathscr{F})\)は同型です.
ここで,新たに記号を導入します:
任意の\(W \in \mathfrak{R}(S)\)に対し,標準的写像$$\Gamma_S(W;\mathscr{F}) \to \Gamma[S;\mathscr{F}]$$は同型です.もし\(S\)が開集合ならば,\(S\in \mathfrak{R}(S)\)で\(\Gamma_S(S;\mathscr{F}) = \Gamma(S;\mathscr{F})\)であるので,$$\Gamma(S;\mathscr{F}) \to \Gamma[S;\mathscr{F}]$$は同型です.\(\Gamma[S;\mathscr{F}]\)を\(\mathscr{F}[S]\)と書くこともあります.もう一つ,記号を導入します:
\(Y\)が開集合ならば$$\mathscr{F}(Y) = \Gamma(Y; \mathscr{F})$$ですが,一般の部分集合\(Y\)に対しては\(\mathscr{F}(Y)\)から\(\Gamma(Y;\mathscr{F})\)への自然な(制限)写像は必ずしも同型とは限りません.例えば,$$\Phi_X = \{ A; A はXの閉集合\}$$とおけば,\(\Phi_X\)は\(X\)の台の族となっています.いま,\(\Phi\)を台の族とします.\(X\)の部分集合\(S\)に対して,$$\Phi |_S = \{ A \in \Phi ; A \subset S\}$$は\(X\)の台の族です.$$\Phi \cap S = \{ A \cap S ; A \in \Phi \}$$とおくと,\(\Phi \cap S\)は\(S\)の中で台の族をなしています.\(S \subset X\)に対し,$$\Phi_S = \Phi_X |_S = \{ A ; A \subset S かつ A は X で閉\}$$とおきます.\(S\)が\(X\)の閉集合ならば,\(\Phi_S = \Phi_X \cap S\)が成り立ちます.\(\mathscr{F}\) を\(X\)上の層とし,\(\Phi\)を台の族とするとき,$$\Gamma_\Phi(X;\mathscr{F}) = \{ s \in \Gamma(X;\mathscr{F}) ; \mathrm{supp} s \in \Phi\}$$とおきます.\(\Phi\)は台の族であるということから,\(\Gamma_\Phi(X;\mathscr{F})\)はAbel群となります.
\(S \subset X\)を閉集合としたとき,次の式が成り立ちます:$$\Gamma_S(X;\mathscr{F}) = \Gamma_{\Phi_S}(X;\mathscr{F})$$とくに,$$\Gamma(X;\mathscr{F}) = \Gamma_{\Phi_X}(X;\mathscr{F})$$です.\(\mathscr{F}^\prime \xrightarrow{i} \mathscr{F}\)が層の準同型であるとすれば,\(s^\prime \in \Gamma_\Phi(X;\mathscr{F}^\prime)\)に\(i \circ s^\prime \in \Gamma_\Phi(X;\mathscr{F})\)を対応させることにより,Abel群の準同型$$\Gamma_\Phi(X;\mathscr{F}^\prime) \xrightarrow{i} \Gamma_\Phi(X;\mathscr{F})$$が定まります.このとき,次の命題が成立します:
前層
\(\mathfrak{W}\)が\(X\)のすべての開集合よりなる被覆の場合は,\(\mathfrak{W}\)上の前層を\(X\)上の前層といいます.\(F(W)\)が環で,\(\rho _{W_2} ^{W_1}\)が環の準同型であるとき,\( (F,\rho) \)を\(\mathfrak{W}\)上の環の前層といいます.\( (G, \rho )\)が\(\mathfrak{W}\)上の環の前層とします.このとき,\(\mathfrak{W}\)上のAbel群の前層\( (F,\rho ) \)が\(G\)-加群の前層であるとは,各\(F(W)\)が\(G(W) \)-加群で,なおかつ\(\rho _{W_2} ^{W_1} : F(W_1) \to F(W_2)\)が次の意味で加群の準同型となることをいいます:
前層の例をいくつか挙げておきます:
以下,Abel群の前層を単に前層と呼びます.
\( (F, \rho )\)と\( (F^\prime , \rho^\prime )\)が環の前層のとき,\(\mu\)が環の前層の準同型であるとは,上の条件の他に,\(\mu_W\)が環の準同型でもあるときにいいます.同様に,環の前層を係数にもつ加群の前層の準同型も定義されます.\(F(W)\)が\(F^\prime(W)\)の部分群で,\(\rho_{W_2}^{W_1}\)が\(\rho_{W_2}^{\prime W_1}\)の制限であれば,\(\mu_W\)を標準的単射として\( (F, \rho) \to (F^\prime , \rho^\prime )\)なる前層の準同型が定まります.このとき,\( (F, \rho) \)は\( (F^\prime, \rho^\prime )\)の部分前層であるといいます.
次回に続きます.